LECTURE: 5-4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM

Question: What does it mean to say F(x) is an anti-derivative of f(x)? In other words, how would you check that $\int f(x)dx = F(x)$?

Check whether $\frac{d}{dx} F(x) = f(x)$. If you differentiate your "answer" and get back the function in the integrand (integral sign) you have found an anti-deriv.) Example 1: Verify by differentiation that $\int x \cos x dx = x \sin x + \cos x + C$ is correct. $\frac{d}{dx} (x \sin x + \cos x + c) = 16 \sin x + x \cos x - 5 \sin x + 0$ $= x \cos x$

Indefinite Integrals

$$\int f(x)dx = F(x)$$
 means $F'(x) = f(x)$

Example 2: Find the general (what does "general" mean here?) indefinite integrals:

(a)
$$\int (10x^4 - 2\sec^2 x + \pi) dx$$

= $10 \cdot \frac{1}{5} x^5 - 2 \tan x + \pi x + C$
= $(2x^5 - 2\tan x + \pi x + C)$

(b) $\int (x+1)(1+2x^4)dx = \int \left(x+1+2x^5+2x^4\right)dx$ $= \frac{1}{2}x^2+x + \frac{2}{5}x^6 + \frac{2}{5}x^5 + C$ $= \left(\frac{1}{3}x^6 + \frac{2}{5}x^5 + \frac{1}{2}x^2 + x + C\right)$

UAF Calculus I

5-4 Indefinte Integrals

Example 3: Find the general indefinite integral:

(a)
$$\int \frac{\cos x}{1 - \cos^2 x} dx = \int \frac{\cos x}{\sin^2 x} dx$$

(b)
$$\int \frac{\sin^2 x}{1 - \cos^2 x} dx = \int \frac{\cos x}{\sin^2 x} \frac{1}{\sin x} dx$$

$$\int \frac{\sin^2 x}{\sin^2 x + \cos^2 x} = \int \cot x \ \csc x \ dx$$

$$\int \frac{\cos x}{\cos^2 x} dx = \int \cot x \ \csc x \ dx$$

(b)
$$\int (x^2 + 2^x + 1)dx$$
$$= \left(\frac{1}{3}\chi^3 + \frac{1}{\ln 2} \cdot 2^\chi + \chi + C\right)$$

Example 4: Find the following indefinite integrals.

a)
$$\int \left(\frac{3-x}{x}\right)^2 dx = \int \frac{(3-x)(3-x)}{x^2} dx$$

$$= \int \frac{9-6x+x^2}{x^2} dx$$

$$= \int \frac{9-6x+x^2}{x^2} dx$$

$$= \int \frac{9}{x^2} - \frac{6}{x} + 1 dx$$

$$= \int (9x^{-2} - \frac{6}{x} + 1) dx$$

$$= \int (9x^{-2} - \frac{6}{x} + 1) dx$$

$$= \frac{9x^{-1}}{-1} - 6 \ln|x| + \chi + \zeta$$

$$= (-\frac{9}{x} - 6\ln|x| + \chi + \zeta)$$
Example 5: University of the test set set of test set of test set of test set

Example 5: Evaluate the following integrals. Why is the +C unnecessary here?

(a)
$$\int_{0}^{9} \sqrt{2x} dx = \sqrt{2} \int_{0}^{9} \sqrt{x} dx$$

 $= \sqrt{2} \int_{0}^{9} \sqrt{x} dx$
 $= \sqrt{2} \int_{0}^{9} x^{\frac{1}{2}} dx$
 $= (\sqrt{2} \frac{2}{5} x^{\frac{3}{2}} + c) \Big|_{0}^{9}$
 $= \frac{2\sqrt{2}}{5} (9^{\frac{3}{2}} + c - (0^{\frac{3}{2}} + c)) \Big|_{0}^{9}$
 $= \frac{2\sqrt{2}}{5} . 27$
 $= \frac{19\sqrt{2}}{5} . 27$
UAF Calculus I
(a) $\int_{0}^{9} \sqrt{2x} dx = \int_{0}^{9} (x^{\frac{3}{2}} + x^{\frac{1}{2}}) dx$
 $= \int_{0}^{9} (x^{\frac{3}{2}} + x^{\frac{1}{2}) dx$
 $= \frac{1}{10} (x^{\frac{3}{2}} + x^{\frac{1}{2}}) dx$

Example 6: Evaluate the following integrals.

$$(a) \int_{1}^{9} \frac{2t^{2} + t^{2}\sqrt{t} - 1}{t^{2}} dt = \int_{1}^{9} \frac{2t^{2} t^{2} + \frac{t^{2}\sqrt{t}}{t^{2}}}{t^{2}} \frac{-1}{t^{2}} dt \quad (b) \int_{\pi/4}^{\pi/2} \frac{1 + \sin^{2}\theta}{\sin^{2}\theta} d\theta = \int_{\pi/4}^{\pi/2} \frac{1}{3} \frac{1$$

The Net Change Theorem

The integral of a rate of change is the net change:

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

Examples of Physical Situations

• If oil leaks from a tank at a rate of r(t) gallons per minute at time t, what does $\int_{c_0}^{180} r(t) dt$ represent? # of gallous leaked from t=60 to t=180 r(t) <u>gal</u> nin 180 min • A honeybee population starts with 100 bees and increases at a rate of n'(t) bees per week. What does • A noneybee population starts with too bees and increases at a rate of n(t) bees per week. What does $100 + \int_{0}^{15} n'(t)dt$ represent? $100 + \int_{0}^{15} n'(t)dt$ represent? Weight gained by the Child at sweeks. To get the weight child you must add weight at birth. • If the units for x are feet and a(x) are pounds per foot what are the units for the following?

(a)
$$\frac{da}{dx} = \frac{1bs/ft}{ft} = \frac{1bs/ft}{ft^2}$$
 (b) $\int_2^{\circ} a(x)dx = \frac{1bs}{ft}$ $ft = \frac{1bs}{ft}$

UAF Calculus I

Example 7: The water flows from the bottom of a storage tank at a rate of r(t) = 500 - 2t gallons per minute for $0 \le t \le 250$. Find the total amount of water that flows from the tank during the first hour.

Total H₂D =
$$\int_{0}^{250} r(t) dt$$
 = 12500 - 62500
= $\int_{0}^{250} (500 - 2t) dt$ = 62500 gal
= $(500 t - t^{2}) \Big|_{0}^{250}$
= $500 (250) - 250^{2}$

Example 8: A particle moves along a line so that its velocity at time t is $v(t) = t^2 - 2t$ (measured in meters per second). (a) Find the displacement of the particle during the time period $1 \le t \le 4$.

displacement =
$$\int_{1}^{4} [t^2 - 2t] dt$$

= $(\frac{1}{3}t^3 - t^2) \Big|_{1}^{4}$
= $\frac{64}{3} - 16 - (\frac{1}{3} - 1)$
= $\frac{63}{3} - 15$
= $2| -15 = 6$ meters forward

(b) Find the distance traveled during this time period.

dist traveled =
$$\int_{1}^{4} |(t^{2} - 2t)| dt$$

= $-\int_{1}^{2} (t^{2} - 2t) dt + \int_{2}^{4} (t^{2} - 2t) dt$
= $\int_{1}^{2} (2t - t^{2}) dt + \int_{2}^{4} (t^{2} - 2t) dt$
= $(t^{2} - \frac{1}{3}t^{3})\Big|_{1}^{2} + (t^{3}\frac{1}{3} - t^{2})\Big|_{2}^{4}$
= $(4 - \frac{9}{3}) - (1 - \frac{1}{3}) + (\frac{19}{3} - t^{2})\Big|_{2}^{4}$
= $4 - 1 - 16 + 4 - \frac{9}{3} + \frac{1}{3} + \frac{64}{3} - \frac{8}{3}$
= $-9 + \frac{49}{3} = -\frac{27}{4}\frac{1}{3} + \frac{49}{3} = \frac{22}{22}\int_{1}^{1} \frac{16}{3}$
UAF Calculus I