Lecture: 5-4 Indefinite Integrals and the Net Change THEOREM

Question: What does it mean to say $F(x)$ is an anti-derivative of $f(x)$? In other words, how would you check that $\int f(x) d x=F(x)$?
Check whether $\frac{d}{d x} F(x)=f(x)$.
If you differentiate your "answer" and get back the function in the integrand (integral sigh) you have found an anti-deriv.)
Example 1: Verify by differentiation that $\int x \cos x d x=x \sin x+\cos x+C$ is correct.

$$
\begin{aligned}
\frac{d}{d x}(x \sin x+\cos x+c) & =1 \sin x+x \cos x-\sin x+0 \\
& =x \cos x
\end{aligned}
$$

Indefinite Integrals

$$
\int f(x) d x=F(x) \text { means } \quad \boldsymbol{F}^{\prime}(x)=f(x)
$$

All the indefinite integrals you (should) already know:

- $\int x^{n} d x=\frac{1}{n+1} \mathrm{X}^{n+1}+\mathbf{C}$
- $\int \sin x d x=-\cos \mathbf{X}+\mathbf{C}$
- $\int \cos x d x=\sin \mathbf{X}+\mathbf{C}$
- $\int \sec ^{2} x d x=\tan \mathbf{X}+\mathbf{C}$
- $\int \csc ^{2} x d x=-\cot \mathbf{X}+\mathbf{C}$
- $\int \sec x \tan x^{d x}=\sec \boldsymbol{x}+\mathbf{C}$
- $\int \csc x \cot x \stackrel{d x}{=}-\csc \times+C$
- $\int \frac{1}{x} d x=\ln |\mathbf{x}|+\mathbf{C}$
- $\int e^{x} d x=e^{x}+C$
- $\int a^{x} d x=\frac{1}{\ln a} a^{x}+c \quad b / c d / d x a^{x}$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} \mathrm{X}+\mathrm{C}$
- $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C$
means include $+C$
Example 2: Find the general (what does "general" mean here?) indefinite integrals:

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
& \int\left(10 x^{4}-2 \sec ^{2} x+\pi\right) d x \\
= & 10 \cdot \frac{1}{5} x^{5}-2 \tan x+\pi x+C \\
= & 2 x^{5}-2 \tan x+\pi x+C
\end{aligned}
\end{aligned}
$$

(b)

Example 3: Find the general indefinite integral:
(a) $\int \frac{\cos x}{1-\cos ^{2} x} d x=\int \frac{\cos x}{\sin ^{2} x} d x$

$$
\begin{aligned}
\begin{array}{l}
\text { Know: } \\
\begin{array}{l}
\underset{0}{\sin ^{2} x+\cos ^{2} x=1} \\
\sin ^{2} x=1-\cos ^{2} x
\end{array}
\end{array} & =\int \frac{\cos x}{\sin x} \frac{1}{\sin x} d x \\
& =\int \cot x \csc x d x \\
& =-\csc x+c
\end{aligned}
$$

(b)

Example 4: Find the following indefinite integrals.
a) $\int\left(\frac{3-x}{x}\right)^{2} d x=\int \frac{(3-x)(3-x)}{x^{2}} d x$

$$
\begin{aligned}
& =\int \frac{9-6 x+x^{2}}{x^{2}} d x \\
= & \int \frac{9}{x^{2}}-\frac{6}{x}+1 d x \\
= & \int\left(9 x^{-2}-6 / x+1\right) d x \\
= & \frac{9 x^{-1}-6 \ln |x|+x+C}{-1}-x
\end{aligned}
$$

$$
=-9 / x-6|n| x \left\lvert\,+x+c \rightarrow \begin{gathered}
\text { def. integrals } \\
+c \text { cancels }
\end{gathered}\right.
$$

Example 5: Evaluate the following integrals. Why is the $+C$ unnecessary here?
(a)

$$
\begin{aligned}
\int_{0}^{9} \sqrt{2 x} d x & =\sqrt{2} \int_{0}^{9} \sqrt{x} d x \\
& =\sqrt{2} \int_{0}^{9} x^{1 / 2} d x \\
& =\left.\left(\sqrt{2} \frac{2}{3} x^{3 / 2}+c\right)\right|_{0} ^{9} \\
& =\frac{2 \sqrt{2}}{3}\left(9^{3 / 2}+c\right. \\
& =\frac{2 \sqrt{2}}{3} \cdot 27 \\
& =18 \sqrt{2 / 2}+c)) \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} x\left(\sqrt[4]{x^{5}}+\sqrt[5]{x}\right) d x & =\int_{0}^{1} x\left(x^{5 / 4}+x^{1 / 5}\right) d x \\
& =\int_{0}^{1}\left(x^{9 / 4}+x^{6 / 5}\right) d x \\
& =\left(\frac{4}{13} x^{13 / 4}+\frac{5}{11} x^{11 / 5}\right) \int_{0}^{1} \\
& =\frac{4}{13} \frac{11}{11}+\frac{5}{11} \frac{13}{13} \\
& =\frac{44+65}{143} \\
& =\frac{109}{143} 15-4 \text { Indefinte Integrals }
\end{aligned}
$$

Example 6: Evaluate the following integrals.

$$
\text { (a) } \begin{aligned}
& \int_{1}^{9} \frac{2 t^{2}+t^{2} \sqrt{t}-1}{t^{2}} d t=\int_{1}^{9} \frac{2 t^{2}}{t^{2}}+\frac{t^{2} \sqrt{t}}{t^{2}} \frac{-1}{t^{2}} d t \quad \text { (b) } \\
& =\int_{1}^{9}\left(2+t^{1 / 2}-t^{-2}\right) d t \\
& =\left.\left(2 t+\frac{2}{3} t^{3 / 2}-\frac{t^{-1}}{(-1)}\right)\right|_{1} ^{9} \\
& =\left(18+\frac{2}{3}(27)+\frac{1}{9}\right)-(2+2 / 3+1) \\
& =18+18+1 / 9-3-2 / 3 \\
& =339 / 9+1 / 9-2 / 3 \frac{3 / 3}{9}=\frac{292}{9}
\end{aligned}
$$

The Net Change Theorem

The integral of a rate of change is the net change:

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Examples of Physical Situations

- If oil leaks from a tank at a rate of $r(t)$ gallons per minute at time t, what does $\int_{60}^{180} r(t) d t$ represent? $r(t) \xrightarrow[60]{\frac{g a l}{\min } \underset{100}{T=T_{\text {min }}} \text { gal }}$
\# of gallons leaked from $t=60$ to $t=180$
- A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{15} n^{\prime}(t) d t$ represent?
 population (start) t growth

$$
=\text { total population at isweeks }
$$

- If $w^{\prime}(t)$ is rate of growth of a child in pounds per year, what does $\int_{0}^{5} w^{\prime}(t) d t$ represent?
weight gained by the child at s weeks. To get the weight of the child you must add weight at birth.
- If the units for x are feet and $a(x)$ are pounds per foot what are the units for the following?
(a) $\frac{d a}{d x} \frac{\text { lbs } / f t}{f t}=1 b s / f^{2}$
(b) $\int_{2}^{8} a(x) d x \quad \frac{\text { lbs }}{f t} \mathrm{ft}=1 \mathrm{bs}$

Example 7: The water flows from the bottom of a storage tank at a rate of $r(t)=500-2 t$ gallons per minute for $0 \leq t \leq 250$. Find the total amount of water that flows from the tank during the first hour.

$$
\begin{array}{rlrl}
\text { Total } H_{2} \mathrm{O} & =\int_{0}^{250} r(t) d t & & =12500-62,500 \\
& =\int_{0}^{250}(500-2 t) d t & =62500 \mathrm{gal} \\
& =\left.\left(500 t-t^{2}\right)\right|_{0} ^{250} & \\
& =500(250)-250^{2} &
\end{array}
$$

Example 8: A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-2 t$ (measured in meters per second).

How much has it moved relative
(a) Find the displacement of the particle during the time period $1 \leq t \leq 4$. So start?

$$
\begin{aligned}
\text { displacement } & =\int_{1}^{4}\left(t^{2}-2 t\right) d t \\
& =\left.\left(\frac{1}{3} t^{3}-t^{2}\right)\right|_{1} ^{4} \\
& =\frac{64}{3}-16-\left(\frac{1}{3}-1\right) \\
& =\frac{63}{3}-15 \\
& =21-15=6 \text { meters forward }
\end{aligned}
$$

(b) Find the distance traveled during this time period.

$$
\begin{aligned}
\text { dist traveled } & =\int_{1}^{4}\left|\left(t^{2}-2 t\right)\right| d t \\
& =-\int_{1}^{2}\left(t^{2}-2 t\right) d t+\int_{2}^{4}\left(t^{2}-2 t\right) d t \\
& =\int_{1}^{2}\left(2 t-t^{2}\right) d t+\int_{2}^{4}\left(t^{2}-2 t\right) d t \\
& =\left.\left(t^{2}-1 / 3 t^{3}\right)\right|_{1} ^{2}+\left.\left(t^{3} / 3-t^{2}\right)\right|_{2} ^{4} \\
& =(4-8 / 3)-(1-1 / 3)+(64 / 3-16)-(6 / 3-4) \\
& =4-1-16+4-8 / 3+1 / 3+64 / 3-8 / 3 \\
\text { UAF Calculus I } & =-9+49 / 3=-27 / 3+49 / 3=\frac{22}{3} \frac{-15}{\frac{-15}{49}} \frac{5}{5-4} \text { Indefinte Integrals }
\end{aligned}
$$

